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Comments on phase-front propagation in ferroelectrics 

J A Tuszyriskit and D Septf 
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Abslract. We examine a model of interface motion in ferroelectrics and find new solutions 
in addition to those presented recently by Gordon. We lhen apply our results to analyse the 
experimental data obtained for PbliO, by Dec. Good qualitative agreement has been found 
between experiment and theory. 

1. Introduction 

Interface motion in ferroelectrics and antiferroelectrics [l-51, as well as ferromagnets [&8] 
has been the object of extensive experimental and theoretical studies [9-111 in recent years. 
This topic of current interest is important as a means of probing multistable dynamical 
systems and also as a challenging example of non-linear behaviour. 

A recently published study of phase-front motion in the ferroelectric PbTiOJ crystal 
[4] revealed several peculiarities which warrant a theoretical inquiry into the underlying 
physical mechanisms. In particular, two distinct types of phase boundary motion were 
observed 

(a) rapid motion at an approximately constant velocity which takes place over short 
periods of time; 

(b) slow motion that can be described by a cubic polynomial dependence of position on 
time. This type of motion persists over longer periods of time (Ar) up to a critical velocity 
uc which is virtually independent of the temperature gadient across the sample. 

Our objective in this paper will be to analyse theoretically the experimental data of 
Dec [4] within a recently proposed model of Gordon [9]. We believe that Gordon’s 
model captures most of the essential physical characteristics for phase boundary motion 
in a ferroelectric undergoing a first-order phase transition. However, a subsequent analysis 
of solutions to the derived equations is, in our opinion, insufficient and misses several 
key points. It will be OUT goal to extend Gordon’s analysis so that direct contact with 
experimental findings can be made. 

2. The theoretical model 

The starting point in Gordon’s model [9] is to postulate a Landau-Ginzburg-type free-energy 
expansion for the ferroelectric crystal in the form 

1 1 1 1 1 F = Fo f - A P Z  - -BP4+ -CP6 - -eaPZ - -sou2 i- D 
2 4 6 2 2 

t Permanent address: Department of Physics, University of Alberta. Edmonton, Albeaa, T6G XI. Canada. 
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where P is the spontaneous polarization, B 0, C > 0 are constant expansion coefficients. 
A = a(T -To),  and To is the temperature at which the paraelectric phase loses its stability. 
Here, D > 0; o is the mechanical stress that couples with P z  due to the piezoelectric effect. 

To describe the time evolution of the order parameter P ,  a timc-dependent Landau- 
Cinzburg equation is then derived [9] which takes the form 

ap azp 
ar ax2 
- + r ( A P  - BP’+  C P 5  - e o P )  - 2 r D -  = 0. 

This is coupled to the mechanical deformation which is found by minimizing F with respect 
to U ,  i.e. 

Since c = au /ax  is the strain tensor component corresponding to U ,  it also satisfies the 
wave equation of an elastic medium whose density is p :  

a2c azo 
a t 2  ax2 

p -  = - 

Substituting 6 from equation (3) into equation (4) yields 

(4) 

which, together with equation (2). forms the basic system of coupled differential equations 
on P and U derived and discussed by Gordon [9]. While the derivation itself is very 
ingenious and physically well thought out, the analysis that followed in 191 was, perhaps, 
too restrictive since only a Limited number of special solutions were found, some of which 
had features that require extra care and attention. In the section that follows we presenl an 
extended analysis of the system of equations (2) and (5). 

3. Analysis of solutions 

Firstly, we rewrite equation (5) as 

which allows four distinct possible sets of solutions. The four ansiitze that we propose are 
listed below. 

= x f ut provided the velocity 
of propagation is U = ( p s ~ ) - ” ~ ,  i.e. the velocity of sound. Simultaneously, the polarization 
variable satisfies Pz = f ( x ) + o r r  where f is an arbitrary function of x and CY is an arbitrary 
constant. 

(i) o = o ( x  ?c u t )  where a is an arbitrary function of 

(ii) o =constant and P is given as above. 
(iii) Both o and P are functions of the same (moving coordinate) variable 6 = x i V I ,  

so that equation (6) can be readily integrated to yield 

(7) pe 2 2 
2 
-U P - (1 - psov2)a = Clt t CO 

which becomes the solution derived by Gordon [9] provided c, = CO = 0. We believe that 
letting CI and CO be non-zero may have physical consequences and the arbitrary assumption 
that they vanish is not justified. However, in the present paper we will not make direct 
comparison between these valid solutions and experimental results. 



Phase-front propagation in ferroelectrics 3585 

(iv) If U = u(t) ,  then 
Pe 2 -P 
2 = U  + CO + Clt + f ( x )  

where CO and c]  are arbitrary constants and f is an arbitrary function of x .  

What we have done so far is to solve equation (5) independently of equation (2). 
Obviously, we must now return to equation (2) with these four special types of solution, 
eliminate those that contradict it  and specify those that satisfy it to such a form that 
full consistency is achieved. We realise that the analysis we present here is not entirely 
general and the problem merits a more advanced mathematical investigation. Our objective, 
however, is to capture the essential physical behaviour. 

Another comment which is worth noting is that this model can be applied to both first- 
and second-order phase transitions. In the latter case we could simply require that C = 0 
and take a negative value for B.  

Below, we discuss the results of substituting the solutions of equation (5), itemized in 
(i)-(iv), into equation (2) and checking for consistency. 

(i) With 5 = x f ut ,  U = U ( : )  and P 2  = f ( x )  +ut we obtain 

2 4 f  + a t )  + 4 r ~ ( f  + - 4rqf + + 4rqf + at)' 

- e o ( l ) ( f  - 4 r ~ f " ( f  + U t )  - 2 r ~ q . i ) ~  = o (9) 

f' = afiax. 
where 

The above equation appears to be solvable only for U in the form of a standing wave, i.e. 
U = 0, and hence also cx = 0. This would then reduce to 

4 r ~ f ~  - 4 r ~ f ~  +4rcf4 - eq(x)f* - 4 r ~ f " f  - zro(f')z = o (IO) 
which is solvable numerically for an arbitrarily given profile of U&), Figure 1 shows two 
sample profiles, one in the form of a periodic stress wave and another taken to be a front. 

(4 (b) 
Figure 1. Plot of solution f(xl to equation (10) assuming that (a) the stress pattern d c )  is 
penodic, (b) ~ ( x )  is a front. 

Letting U # 0, i.e. introducing a propagation velocity to the stress wave, requires the 
polarization wave to also propagate at the same speed. Hence, f ( x )  = x and cx = U. This 
yields a particular solution for ~ ( 5 ) .  i.e. 

(11) 
1 = - [ Z U ~  + 4r~t*  - 4 r ~ p  + 4rq4 - 21-01 

eC2 
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which is singular at the point 5 = 0 and hence may be interpreted as a propagating point 
defect which may represent a localized lattice contraction (see figure 2) .  Simultaneously, 
the associated polarization function diverges at large x .  This either means that the entire 
solution is not physical or its spatial validity is limited to a finite range. 

.I A Tuszyhki and D Sept 

Figure 2. Solution of equation ( 1 1 )  representing a defect o(C) 

(ii) for U = uo = constant we obtain the usual time-dependent Landau-Ginzburg 
(TDLC) equation for the polarization wave P ( x ,  t ) :  

a2P ap 
at  ax2 

2 r D -  + r[(A - euo)P - B P 3  + CP51 = 0 _ _  
This equation has been recently analysed from the point of view of symmetry reduction 
[12]. In one-dimensional space, propagating solutions exist in the form P ( x ,  t) = p ( x ) f ( t )  
where, in general, p ( x )  = I ,  t = x - ut with an arbitrary velocity U. However, in the 
special case of critical and tricritical points acceleraring solutions were found for which 
p ( x )  = x - ' / ~ ,  5 = r/2x2 if A = B = 0 (tricritical point) and p ( x )  = x-I ,  t = r/2x2 if 
A = C = 0 (critical point). 

Note that in equation (12). the effect of coupling to the mechanical stress (stationary) 
is equivalent to a shift in the characteristic temperatures, e.g. 

To+%+-. 
a 

The form of solutions to equation (12) has been discussed at length elsewhere [13] and 
is, in general, of a damped-oscillatory type (see figure 3(a)) unless it becomes a kink (see 
figure 3(b)) provided the velocity of propagation U satisfies a specific relationship which is 
discussed later (see equation (22)) [14]. The important thing to note is that interface fronts 
propagate at a specific velocity given by the magnitude of stress uo and the temperature T. 
We will come back to this point later when we analyse the experimental situation. 

(iii) In this case we have the relationship between U and P given by equation (7) which, 
when substituted into equation (2). yields 

-UP' + r( ip - t j ~ 3  + C P ~ )  - zrDpd' = o 

P' = aP/ag 

(14) 
where 

and the renormalized expansion coefficients are - 
A = A - eco - eclt 
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P (E) 

-20 -10 

Figure 3. Two types of propagating solution P(:) to equalion (12): (a) damped oscillatoq 
profile and (b) a kink 

Figure 4. Solution of P(:) for equation (14) with CI = 8, 10 compared with kink soluiion. 

and 
peu2 

2(1 - psou2)' 
E = B +  

Several observations can be made on the basis of the above equation. First, for sufficiently 
high velocity values, an effective cross-over region from first- to second-order phase- 
transition dynamics can be obtained. This means that with B > 0, becomes negative 
provided 

- 2  = uc. 
2B 

2Bpso - pe 
U= 2 

Note that the critical velocity U, is independent of temperature. Second, the effect 
of coupling to stress is, in addition to the above, to (a) renormalize the characteristic 
temperatures due to CO, and (b) sharpen the boundary profile due to c , .  The latter effect can 
be seen as deepening the local potential well with an increase of g .  Eventually, for a large 
enough g a singularity in P will develop causing rupture in the crystal, simultaneously with 
U + 00 as 5 + W. In figure 4 we have shown the effect of c, on a typical step-like solution. 
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Finally, it is perhaps worth mentioning that assuming d c 0, i n  particular for second-order 
phase transitions, requires some minor modifications but can still be incorporated in this 
analysis. 

J A Tuszyriski and D Sept 

If CI = CO = 0 as assumed by Gordon [9], we then simply have 

2rDP'' + UP' - r ( A P  - g P 3  + C P 5 )  = 0. (18) 
This equation has an exact kink-like solution in the form [SI 

112 
P = 5 [ 1 + tanh (31 

-45 

where P, is 

and the width 
A = J  3 0  

2[bPJ? - A] 

moving with a velocity given by the equation 

(22) 

This model implies a velocity selection mechanism given mathematically by the formula 
above. Note that Gordon's equations for P,, A and U are very similar (a few misprints 
can easily be corrected by comparison with our equations (u))-(22)), but still keep the 
dependence on U which is decoupled in our paper. In this respect, Gordon's analysis is 
incomplete since U is an independent variable just like P is. We wish to emphasize that 
both Pf and A are strongly velocity dependent through k and hence equation (22) is only 
implicit. Lastly, the above formulae can be easily recalculated in the case of second-order 
phase transitions where different sign conventions result in minor changes. 

2 
3 

U = -rA(4A - dP$. 

4. Comparison with experiment 

In his experimental work on PbTi03 phase-front dynamics, Dec [4] identified two distinct 
regions of behaviour. Slow phasefront movement over a distance Ax in a time At can be 
fitted with a cubic equation for distance ( as a function of t ,  i.e. 

(23) 6 = att + azt2 + a3t3 

and hence 

In figure 5(b) we have shown the plots of U(() for the seven sets of data listed in table 1 of 
141. We have reproduced the essential parts of this table in our table 1 for easy reference. 
Rapid phase-front motion over a distance Ax' in a very short interval At' is characterized 
by a constant propagation velocity. 

We believe that the slow phase-front dynamics can be directly described using the 
extended model of Gordon that was presented in section 3 of our paper. To this end we 
have analysed U in our equation (22) as a function of position (. Note that the experimental 
conditions involved the presence of a temperature gradient across the sample AT/Ax whose 
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Figure 5. Plots of (a) c(t); @) ~ ( 6 ) .  Labels correspond to the seven experimental sets of data 
given in table 1. 

three values used were 4.0, 2.5 and 1.5 K mm-'. The presence of a temperature gradient is 
required for phase-front propagation since the experiment involved is a first-order phase 
transition in which there exists a potential barrier between the two coexisting phases. 
Obviously, second-order phase transitions are characterized by a different behaviour. In 
terms of the model parameters, only the coefficient A is assumed to depend on temperature, 
i.e. A = a(T - TO). The presence of a uniform temperature gradient across the sample 
implies that 

(25) T ( t )  = ( A T / A x ) t  + TI 

A ( 6 )  = a ( ( A T / A x ) t  + T I  - To). 

where T, is the temperature at the reference end for which 6 = 0. Consequently, 

(26) 

We have assumed the above linear dependence of A ( t )  and studied numerically its 
implications on the plot U(.$) from the theoretical expression in equation (22). Figure 6 
shows our findings with respect to the variation of several key model parameters: 

(a) changing C affects the plot of u ( t )  rather negligibly; 
(b) changing e has little effect on U@); 
(c) changing B has some effect on the initial velocity uo but little effect on the shape 

of the plot or the asymptotic velocity; 
(d) a variation in the temperature gradient coefficient A T / A x  has no visible effect on 

the initial velocity uo. i.e. the intercept on the diagram is virtually unaffected, while it alters 
very substantially the plot U((). This is in total agreement with the experimental findings 
where V I  did not depend on A T / A x  but the form of u ( t )  varied. 

We, therefore, claim good qualitative agreement between the model presented here and 
the slow-front dynamics. Figure 7 illustrates that our theoretical results can be closely fitted 
to the experimental curves. However, we do not believe that the fast-front dynamics is 
described by the same solution of the coupled equations of motion. The fact that these fast 
movements do not depend on the temperature gradient indicates possibly a different type of 
solution. As stated by Dec [4], fast motion is connected to the detachment of the phase-front 
from the dislocation network. This can be translated into a decoupling between P ( e ,  t )  and 
u ( t ,  t ) .  One such possibility exists under our item (ii) where the stress wave is stopped 
altogether (for example by a defect) while the polarization wave P satifies the rescaled 



3590 J A Tusqkrki and D Sept 

" 

I 
2 4 6 8 io 

(C) 

Figure 6. Plots of U(.$) based on numerical solutions to equation (22) for (a) different values 
of C .  C = 0) 1. (ii) 3, and (iii) 5; @) different values of e, e = (i) 0.05. (ii) 0.1. and (iii) 0.5; 
(c) different values of B,  B = (i) I. (ii) 3, and (iii) 5 ;  and (d) different values for A T J A x  = 
(i) 2. (ii) 1.5. and (iii) 1, 

V 

I 
2 4 6 8 io E 

Figure 7. Fits of experimenlal (solid) to lheoretical (dashed) curves for (a) data set 4 and (b) 
data se1 6 in table I .  

TDLG equation. Note that here a substantial amount of mechanical stress may overshadow 
the temperature-dependent coefficient A in equation (12) resulting in a virtually constant- 
velocity propagation of the polarization wave. The velocity propagation in this case is a 
function of r, D, B, and DO. 
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Table 1. Experimental values of che model parameters following [41. 

A T l A x  a! 42 0 3  At 
NO (K "I-') (Irm s-') (wu 5 - 9  ( w n  s-3 (S) 

1 4.0 9.5 9.2 -0.8 2.93 
2 4.0 11.7 19.1 -4.0 0.94 
3 4.0 9.9 30.5 -8.6 0.69 
4 4.0 5.4 45.9 -15.4 0.56 
5 2.5 8.5 12.2 -1.5 1.92 
6 2.5 7.3 15.7 -2.2 1.44 
7 1.5 11.0 14.3 -1.4 1.43 

5. Summary 

This paper has been concerned with the modelling of phase-front propagation in 
ferroelectrics. We adopted the model proposed by Gordon [9] where the spontaneous 
polarization (order parameter) is coupled to a stress wave. We analysed the equations 
of motion derived by Gordon and found several types of solution, both old and new. The 
old solutions in the form of moving kinks were found to be explicitly expressible in terms 
of model parameters, in particular, the propagation velocity. Several new types of solution 
were also obtained, some of which may represent defect structures and some others allow 
for an independent motion of stress and polarization waves. Finally, we made a direct 
comparison of this model with the experimental results of Dec [4] for PbTiOs. Kink-type 
phase-front motion provided a model for slow-velocity behaviour while decoupled dynamics 
of P and (3 appears to be consistent with the fast phase-front motion observed. 
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